Final Rule of FSMA is Published, but Questions Remain
By James Quinn and Londa Vanderwal Nwadike*

The long awaited final Produce Safety Rule for the Food Safety Modernization Act (FSMA) was released just after the Western Produce Auctions held their annual meeting near Windsor on Nov. 13th. Raymond Yoder gave a good presentation about the need of this final rule and the benefits it might bring, but he certainly would have preferred it finished prior to that. Thus he couldn’t go into any specifics. However, Raymond reiterated that produce auctions had received an exemption from Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Controls for Human Food regulation as a food facility. A food facility is generally processing produce in some way, which an auction is not, and complying with these regulations would be very complicated and difficult. Thus how the produce auction facilities are to be regulated or defined should be in the Produce Safety Rule.

Unfortunately, we are still waiting for some critical clarifications about the final rule from the Food and Drug Administration (FDA). These clarifications are more about the specifics of its enforcement. Much of what will be required of the growers to ‘do’, has been resolved. The purpose of this article is to inform you about what the different universities will be doing to assist, and when we’ll be providing more complete information.

The FSMA is requiring more rigorous training. The lead institution for this is Cornell University (NY) and there is now a 3 party structure for communicating on this subject, called the Produce Safety Alliance (Cornell Univ., the FDA and USDA) which has a dedicated website http://produce-safety-alliance.cornell.edu/. Beginning this year, regional training will occur around the country for educators, who will later provide training to growers. For this region that training is scheduled for Feb. 9-10th, in Joplin. It is most probable that grower trainings will NOT occur until after the 2016 growing season. Future grower trainings will be conducted by a PSA (Produce Safety Alliance) lead trainer and assisted by a PSA trainer. The Joplin training will get educators, such as the article co-authors, approved as PSA trainers.

(continued on pg. 3)
Increasing beneficial insects for enhanced pollination and biological control using insectary plants

By Dr. Jaime Piñero, Lincoln University IPM program.

Honeybees, bumble bees, and ladybeetles are beneficial insects that most producers are able to recognize easily. However, there are many other types of beneficial insects such as predatory insects (lacewings, larvae of hover flies, minute pirate bugs, etc.) as well as parasitic flies and wasps which often are more difficult to recognize. Predatory insects and parasitic wasps kill many of the insect pests that otherwise would reproduce and damage your vegetables.

Most species of beneficial insects require food in the form of pollen (a source of protein to reproduce), nectar (a source of energy to survive), as well as prey / hosts and shelter. Their effectiveness -- either, as pollinators or for natural pest control -- may not be met in agricultural landscapes if those types of resources are lacking. Thus, establishing flowering plants in and around fields to provide pollen and nectar resources for natural enemies has shown promise as a strategy to enhance biological control of crop pests.

Vegetable producers can increase the abundance of natural enemies of insect pests by planting insectary plants. Beyond providing effective natural pest control, the friendly insects also assist in pollination. For example, the larvae of hover flies are predators while adults assist with pollination.

What types of plants attract the most beneficials?

The top five plants that can be planted annually* are:

1. Sweet alyssum (white variety). It belongs to the mustard family. Flowering period is long (several months). Natural enemies attracted include minute pirate bug, lacewings and ladybugs (predators) as well as small parasitic wasps that can attack aphids and other small insects.
2. Buckwheat. It is very attractive to honeybees, hover flies, soldier beetles, parasitic wasps and parasitic flies. Plus, predatory insects including assassin bugs, shield bugs, and predatory stink bugs.
3. Fennel. This plant attracts many ladybeetles, wasps, and hover flies. Fennel is also a host plant for the caterpillars of the anise swallowtail butterfly.
4. Sunflower. This plant can attract predatory insects such as big-eyed bugs, wasps, lady beetles and predatory bugs.
5. Mustard. It is very attractive to lacewings, ladybeetles, and parasitic wasps that attack aphids and other small-sized insects.

*This list includes plant species that consistently have been identified through research and are also easy to establish / maintain. Dozens of other plant species can supplement this list.

Encouraging natural enemy activity might reduce the oscillations in pest populations and regulate insect pests and mites below economic thresholds. Make sure to have insectary plants during the entire growing season. This may require re-seeding some plant species such as buckwheat and mustard.

Examples of key natural enemies visiting insectary plants

- Lady bug
- Minute pirate bug
- Big-eyed bug
- Tachnid fly
- Hover fly
- Lacewing
- Soldier beetle
- Assassin bug
- Predatory wasps
- Parasitic wasps
In November of 2014 this newsletter addressed the proposed FSMA law, and a FDA fact sheet and Q&A piece was inserted. Most of those revisions did carry through to the final rule. What there is some uncertainty on is whether growers will actually have to be inspected (like with GAPs certification) or if they’ll just have to take a training and then keep suitable records to show they are complying. Also undetermined is whether produce auction facilities are specifically mentioned, or if a generic description is used for a facility typical of this type. And then how these facilities would ‘comply’ with the rule.

We expect these questions to be resolved within a month or two. At that time we’ll send out a special newsletter edition dedicated to the final Produce Safety Rule and what appears to be most relevant to growers selling to produce auctions.

* Londa serves as State Extension Food Safety Specialist for both University of Missouri and Kansas State University. She is based in Kansas City and can be reached at tel: 816-482-5860 & email: nwadikel@missouri.edu or tel: 913-307-7391 & email: lnwadike@ksu.edu.
The ‘State’ of Vegetable Grafting in the U.S.

By James Quinn and Pat Byers

The authors of this article had an opportunity to attend an exciting two-day workshop in Michigan, the National Vegetable Grafting Symposium and Extension In-Service Training, which brought together leading researchers and extension agents from across the US. It was recent (early December), so we thought this was a good opportunity to summarize ‘the latest’ in this newly developing area of vegetable production. The workshop was funded by the USDA.

Tomatoes received much of the attention, and are the source of most grafted vegetables in the US. Interestingly, in Asia watermelons and other cucurbits are most grafted. In Asia they have become highly efficient at producing the grafted transplants, thus the cost is much less. And because watermelon spacing is much lower per acre than tomatoes, the cost increase to plant an acre of grafted watermelons is much less as well. We'll return to watermelons later.

Both in the US and around the world, resistance to soil borne pathogens is the leading reason to consider grafting. The economics are very compelling in this situation as crop yields decrease, sometimes dramatically, unless grafted plants with resistant rootstock are used. There is much research occurring in this area. An example is with tomatoes, where more than 50 tomato rootstock varieties are now described. They vary significantly in pathogen resistance.

In many regions and systems, grafted vegetable plants routinely outperform ungrafted counterparts in terms of vigor, stress tolerance and/or yield. But, is the increased expense of grafting paid for in these situations? Usually, but certain conditions make it more likely, such as:

- More intensive production systems are more likely to benefit (e.g. greenhouse or high tunnel tomatoes vs field grown). The value of the crop is generally higher and the harvest season is longer, thus there is more time to recoup added production expenses. But there are glitches; for example, grafted tomato plants were noted as often set back about one week, and if first harvested fruit are very highly priced, this may have economic consequences.
- When the scion has lower vigor, such as heirloom tomato varieties. The fruit prices are also higher.

There remains much to be learned. For instance, researchers in NY documented that grafted tomatoes in high tunnels were MORE likely to get foliar diseases. Why? The plants grew so vigorously that the foliage was thicker, setting up conditions that made the plants more disease-prone. Note that the rootstock imparts resistance mostly to the ‘roots’, not up into the scion, or top part. This points out a challenge in ‘experimenting’ with just a row or two of grafted plants. If you put them on the fertility regimen of ungrafted plants, they may grow bullish, the phenomenon of plants that are overly vegetative to the point of not setting fruit.

Grafted watermelon plants have shown an odd, but beneficial characteristic, improved fruit quality. The flesh tends to be denser and redder (higher lycopene levels). The plants are so vigorous that spacing needs to be increased, which saves some cost but also impacts weed control tactics.

With all the work being done in this area by researchers, seed companies, growers, and extension specialists, a unified source of information was recognized to be beneficial. So a website was formed that will be revised to stay current - www.vegetablegrafting.org. Other crops receiving grafting interest are melons, cucumber, peppers and eggplant. There is a list of suppliers of grafted plants on the website. Additional suppliers can be added, but need to be willing to ship or deliver plants regionally.