Taking an environmentally sensitive approach to pest management
This year has been a challenging one or soybean production in Missouri. Drought and heat have had a major impact on the crop. However, there are still some biotic diseases showing up in fields across the state. Plants may still be showing symptoms of late season Phytophthora root rot, sudden death syndrome (SDS) and Cercospora leaf spot/blight as well as of the soybean vein necrosis virus that has been so prevalent this season. Charcoal rot is being reported from most areas of the state. This is also the time of year when anthracnose and pod and stem blight may show up on maturing soybean plants. Losses from soybean cyst nematode continue to be a problem. This would be a good year to sample fields for SCN.
Yield losses from these various late season diseases will vary depending on when symptoms began to occur, number of plants infected, severity of disease in infected plants and weather conditions from now to harvest. In some cases although yellowing of the upper nodes may be quite widespread and spectacular in a field, damage is limited to the uppermost leaves and pods so yield loss should be minimal. In other cases, especially with sudden death syndrome, the entire plant may have been killed prematurely. If large areas of a field are thus affected, yield losses will be greater. Although it is too late in the season to do much to control these diseases this year, management strategies to prevent or minimize these diseases next season are also given below.
Wet conditions after planting regardless of planting date increase the likelihood of Phytophthora root rot. Phytophthora may cause seed decay and seedling blight but it can also cause symptoms later in the season as plants move into reproductive stages of growth. Infected older plants show reduced vigor through the growing season or die gradually over the season. Lower leaves may show a yellowing between the veins and along the margins. Upper leaves may yellow. The stems show a characteristic brown discoloration that extends from below the soil line upward and even out the side branches. Eventually the entire plant may wilt and die. Withered leaves remain attached even after the plant dies. Preventive measures are the main means for managing Phytophthora root rot. Select varieties with race-specific resistance, tolerance or a combination of the two, plant in good seedbed conditions, tile to improve drainage, take steps to reduce compaction, rotate crops and use an appropriate fungicide seed treatment.
Symptoms of sudden death syndrome (SDS), caused by a strain of Fusarium virguliforme, may appear several weeks before flowering but are more pronounced after flowering. Foliage symptoms begin as scattered yellow blotches in the interveinal leaf tissue. These yellow blotches may increase in size and merger to affect larger areas of leaf tissue. Yellow areas may turn brown but veins remain green giving the leaves a striking appearance. Infected plants may wilt and die prematurely. Severely affected leaflets may drop off the plant leaving the petiole attached or may curl upward and remain attached to the plant. Root systems may show deterioration and discoloration of lateral roots and taproot. When split open, internal tissues of the taproot and stem may show a light gray to light brown discoloration.
Management options for SDS are somewhat limited but should include planting varieties which have performed well where SDS has been a problem, improving drainage in poorly drained fields, avoiding compaction, staggering planting dates, delaying planting until soils are warm and dry, avoiding continuous crop soybean, maintaining good crop vigor, avoiding crop stress including stress from soybean cyst nematode and harvesting fields with SDS in a timely fashion.
Septoria brown spot causes small brown spots on the unifoliolate and lower trifoliolate leaves. The individual spots may run together forming irregularly shaped brown blotches on the leaves. Infected leaves may yellow and drop prematurely. Brown spot usually starts on the lower portion of the plant. Under favorable weather conditions (warm, wet weather), the disease may move up through the plant. Brown spot was evident in many Missouri soybean fields earlier this season. But late season rains can trigger a reoccurrence of Septoria brown spot. Symptoms move up through the canopy of soybean plants. Lower leaves may show heavy spotting, yellowing and dropping prematurely. Upper leaves may also show spotting and yellowing. Some fields which have a yellow cast from the road may be showing symptoms of Septoria brown spot rather than SDS.
The fungus which causes this disease, Septoria glycines, survives in infested residues left on the soil surface. Fields with continuous soybean production are more likely to show damage. Planting disease-free, good quality seed of resistant varieties, rotating crops with at least one year between soybean crops and maintaining good plant vigor should reduce losses from Septoria brown spot.
Cercospora kikuchii can infect soybean seeds, pods, stems and leaves but is most commonly found on the seed. However, this year we are seeing some cases of leaf spot or leaf blight caused by this fungus. Infection is primarily occurring on the uppermost leaves and begins as reddish purple to reddish brown, angular to somewhat circular lesions on the soybean leaves. These lesions may coalesce to kill larger areas of leaf tissue. The uppermost trifoliolate leaf and petiole may be blighted and brown. One striking symptom of this disease may be the premature yellowing and then blighting of the youngest, upper leaves over large areas of affected fields. In most fields, the symptoms have not progressed down the plants more than one to two nodes. Pods at the uppermost node may develop round, reddish purple to reddish brown lesions. This pathogen may also infect seed causing purple seed stain. Infected seed show a conspicuous discoloration ranging in color from pink to pale purple to dark purple. The discoloration may range from small specks to large blotches which cover the entire surface of the seed coat. Temperatures of 82-86°F with extended periods of high humidity favor disease development.
At this point in the season control of Cercospora leaf spot and purple seed stain is not feasible. It is important to remember that since this fungus can infect the seed, seed from heavily infected fields should not be used for seed. If infected seed must be planted, seed lots should be thoroughly cleaned and an appropriate seed treatment fungicide used. Rotating soybean with crops other than legumes will also help reduce Cercospora leaf spot and blight in future soybean crops.
Colletotrichum truncatum and several other Colletotrichum species cause anthracnose of soybean. Typically, anthracnose is a late season stem and pod disease of soybean. Symptoms occur on stems, pods and petioles as irregularly shaped, light to dark brown spots, streaks or lesions. Eventually black fungal structures may be evident in these lesions. Anthracnose may also cause tip blight. The tip blight phase of anthracnose causes a yellowing or browning of the uppermost leaves and pods. The blighted tips may dry up and die prematurely. Anthracnose is favored by warm, wet weather, and the tip blight phase of anthracnose is most likely to occur after a rainy period.
Again, at this point in the season control of anthracnose is not feasible. This fungus may also infect seed so seed from heavily infected fields should not be used for seed. If infected seed must be planted, seed lots should be thoroughly cleaned and an appropriate seed treatment fungicide used. Rotating crops with at least one year out of soybean will also help reduce anthracnose.
Phomopsis longicolla and the other Diaporthe and Phomopsis species that cause pod and stem blight and Phomopsis seed decay can survive in infested crop residues, in the soil and in seed. Symptoms usually develop on stems of plants during later reproductive stages of growth.
Pod and stem blight infected plants may be stunted and their stems discolored. Black pycnidia or fruiting bodies of the cause fungi develop on the lower portion of the main stem, branches and pods as plants reach maturity. The pycnidia may be limited to small patches near the nodes or may cover dead stems and pods. On stems, pycnidia are usually arranged in linear rows while on pods they are scattered across the pods. The fungi may grow through the pod walls and infect the seed causing Phomopsis seed decay. Infected seed is usually oblong in shape, somewhat shrunken or shriveled and covered with a white mold growth.
Although prolonged periods of wet weather during flowering and pod fill favor the development of pod and stem blight, the rains since Labor Day have been enough to trigger low levels of this disease this year. If wet weather continues through harvest, levels of Phomopsis seed decay may increase.
At this point in the season control of pod and stem blight is not feasible. Management options include rotating crops with at least one year between soybean crops and planting disease-free seed.
Symptoms of soybean cyst nematode (SCN) range from no obvious symptoms to subtle differences in plant height and vigor or unexpected decreases in yield to severe stunting and discoloration of plants or dead plants. Foliage symptoms may include a yellowing of leaves from the margin inward or a general yellowing of leaves. But such foliage symptoms are also caused by a number of other factors including root rot diseases, nutrient deficiencies, herbicide injury and compaction, so foliage symptoms should not be used to diagnose SCN. Plants with SCN may have poorly developed root systems, if plants are carefully dug up, females may be evident on the roots. The females appear as tiny (smaller than nitrogen-fixing nodules), whitish to yellow to brownish, lemon-shaped structures on the roots. Symptom expression may be more severe if plants are subjected to other stresses such as moisture stress, nutrient deficiencies, herbicide injury, insect damage or other diseases.
Symptoms typically begin to develop as plants move into reproductive stages of growth. Infected plants are less vigorous and have smaller leaves. Leaves may turn yellow and wilt. Leaves eventually turn brown and have a dry appearance. The taproot and lower stem develop a silvery gray to light-gray discoloration of the epidermis (outer layer of the soybean stem). The epidermis may flake or shred away from the stem, giving the stems a tattered appearance. Fine black specks or microsclerotia may be evident in tissues below the epidermis and eventually in epidermal tissues. Symptoms may develop on scattered plants, in circular to oval patches in a field, in drier areas of a field or across much of a field. Charcoal rot is favored by drought conditions so may be more prevalent than usual in much of Missouri this season. Management options for charcoal rot include rotating crops, maintaining good crop vigor to help reduce losses from charcoal rot and irrigating properly from just before bloom to pod fill.
Subscribe to receive similar articles sent directly to your inbox!
REVISED: August 31, 2012